Generates ops for interacting with Great Expectations.
name (str) – the name of the op
datasource_name (str) – the name of your DataSource, see your great_expectations.yml
data_connector_name (str) – the name of the data connector for this datasource. This should point to a RuntimeDataConnector. For information on how to set this up, see: https://docs.greatexpectations.io/docs/guides/connecting_to_your_data/how_to_create_a_batch_of_data_from_an_in_memory_spark_or_pandas_dataframe
data_asset_name (str) – the name of the data asset that this op will be validating.
suite_name (str) – the name of your expectation suite, see your great_expectations.yml
batch_identifier_fn (dict) – A dicitonary of batch identifiers to uniquely identify this batch of data. To learn more about batch identifiers, see: https://docs.greatexpectations.io/docs/reference/datasources#batches.
input_dagster_type (DagsterType) – the Dagster type used to type check the input to the op. Defaults to dagster_pandas.DataFrame.
runtime_method_type (str) – how GE should interperet the op input. One of (“batch_data”, “path”, “query”). Defaults to “batch_data”, which will interperet the input as an in-memory object.
extra_kwargs (Optional[dict]) –
adds extra kwargs to the invocation of ge_data_context’s get_validator method. If not set, input will be:
{ "datasource_name": datasource_name, "data_connector_name": data_connector_name, "data_asset_name": data_asset_name, "runtime_parameters": { "<runtime_method_type>": <op input> }, "batch_identifiers": batch_identifiers, "expectation_suite_name": suite_name, }
An op that takes in a set of data and yields both an expectation with relevant metadata and an output with all the metadata (for user processing)